If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10x^2-22x-15=0
a = 10; b = -22; c = -15;
Δ = b2-4ac
Δ = -222-4·10·(-15)
Δ = 1084
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1084}=\sqrt{4*271}=\sqrt{4}*\sqrt{271}=2\sqrt{271}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-22)-2\sqrt{271}}{2*10}=\frac{22-2\sqrt{271}}{20} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-22)+2\sqrt{271}}{2*10}=\frac{22+2\sqrt{271}}{20} $
| 8x-3-4x=9+2x | | 7c-8=2c+12 | | 3+2x=39-x | | x-5=4x+14 | | 2x=39-x | | 7x-8=5x-18 | | 8x+7=4x+29 | | Y²+2y-8=0 | | 2x-12=12-6 | | ((x/2)/50)+((x/2)/70)=(x+2/60) | | 3/4n+n=168 | | ((x/2)/50)+((x/2)/70)=(x/60)+2 | | Y=2.8x+7.7 | | ((x/2)/50)+((x/2)/70)-((x/60)+2)=0 | | (15-6)+(4-1)x23=N | | x²-14x-49=0 | | 14m^2-12m+9=0 | | 6x=4/1.2 | | 5x-6(26-4x)=18 | | Z+1+2z/5=1 | | x/(-11)=5 | | 3x+2=-7(x-6) | | 29x+17=22x+59 | | y=-1/29(3.5+2y)+5 | | 9x+54=3x+6 | | (5x-9)^2=0 | | 2x²-11x+14=0 | | 5^(2x)-5^(x+1)+6=0 | | 2x=(360/4)x | | 2(u-8)-4u=-10 | | 17x-5=6x+6 | | x÷2=0 |